skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NEW CONSTRAINTS ON THE ABUNDANCES OF SILICATE AND OXIDE STARDUST FROM SUPERNOVAE IN THE ACFER 094 METEORITE

Journal Article · · Astrophysical Journal Letters
; ;  [1]
  1. Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, D-55128 Mainz (Germany)

We studied about 5000 μm{sup 2} of fine-grained matrix material in the Acfer 094 meteorite by high-resolution (nominal 50 nm) NanoSIMS ion imaging for the presence of O-rich presolar (stardust) grains. This approach permits identifying presolar grains down to <100 nm in size, compared to >150 nm in lower-resolution (nominal 100 nm) ion imaging surveys. The number density of identified presolar grains is a about a factor of two to three higher than what was found by lower-resolution ion imaging studies. The abundances of grains of O isotope Group 3 and 4 are higher than previously found. None of the presolar grains shows the strong enrichments in {sup 16}O expected from model predictions for the majority of supernova (SN) grains. Other potential O-rich SN grains, the Group 4 and some of the Group 3 grains, make up 33% by number and 19% by mass. This is clearly higher than the ∼10% (by number) inferred before and the 5% (by mass) estimated by a model for stellar dust in the interstellar medium. Our work shows that O-rich SN grains might be more abundant among the population of presolar grains in primitive solar system materials than currently thought, even without the {sup 16}O-rich grains as predominantly expected from SN models.

OSTI ID:
22518933
Journal Information:
Astrophysical Journal Letters, Vol. 808, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 2041-8205
Country of Publication:
United States
Language:
English