skip to main content

Title: ON THE ELECTRON-TO-NEUTRAL NUMBER DENSITY RATIO IN THE COMA OF COMET 67P/CHURYUMOV–GERASIMENKO: GUIDING EXPRESSION AND SOURCES FOR DEVIATIONS

We compute partial photoionization frequencies of H{sub 2}O, CO{sub 2}, and CO, the major molecules in the coma of comet 67P/Churyumov–Gerasimenko, the target comet of the ongoing ESA Rosetta mission. Values are computed from Thermosphere Ionosphere Mesosphere Energy and Dynamics/Solar EUV Experiment solar EUV spectra for 2014 August 1, 2015 March 1, and for perihelion (2015 August, as based on prediction). From the varying total photoionization frequency of H{sub 2}O, as computed from 2014 August 1 to 2015 May 20, we derive a simple analytical expression for the electron-to-neutral number density ratio as a function of cometocentric and heliocentric distance. The underlying model assumes radial movement of the coma constituents and does not account for chemical loss or the presence of electric fields. We discuss various effects/processes that can cause deviations between values from the analytical expression and actual electron-to-neutral number density ratios. The analytical expression is thus not strictly meant as predicting the actual electron-to-neutral number density ratio, but is useful in comparisons with observations as an indicator of processes at play in the cometary coma.
Authors:
; ; ;  [1] ; ;  [2]
  1. Swedish Institute of Space Physics, Uppsala (Sweden)
  2. Department of Physics, Imperial College London, London, SW7 2AZ (United Kingdom)
Publication Date:
OSTI Identifier:
22518840
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 812; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CARBON DIOXIDE; CARBON MONOXIDE; COMETS; COMPARATIVE EVALUATIONS; COSMIC ELECTRONS; ELECTRIC FIELDS; ELECTRON DENSITY; ESA; EXTREME ULTRAVIOLET RADIATION; EXTREME ULTRAVIOLET SPECTRA; IONOSPHERE; MESOSPHERE; MOLECULES; PHOTOIONIZATION; THERMOSPHERE; WATER