skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A MAGNIFIED GLANCE INTO THE DARK SECTOR: PROBING COSMOLOGICAL MODELS WITH STRONG LENSING IN A1689

Journal Article · · Astrophysical Journal
; ; ;  [1];  [2]
  1. Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Valparaíso (Chile)
  2. Aix Marseille Universite, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France)

In this paper we constrain four alternative models to the late cosmic acceleration in the universe: Chevallier–Polarski–Linder (CPL), interacting dark energy (IDE), Ricci holographic dark energy (HDE), and modified polytropic Cardassian (MPC). Strong lensing (SL) images of background galaxies produced by the galaxy cluster Abell 1689 are used to test these models. To perform this analysis we modify the LENSTOOL lens modeling code. The value added by this probe is compared with other complementary probes: Type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), and cosmic microwave background (CMB). We found that the CPL constraints obtained for the SL data are consistent with those estimated using the other probes. The IDE constraints are consistent with the complementary bounds only if large errors in the SL measurements are considered. The Ricci HDE and MPC constraints are weak, but they are similar to the BAO, SN Ia, and CMB estimations. We also compute the figure of merit as a tool to quantify the goodness of fit of the data. Our results suggest that the SL method provides statistically significant constraints on the CPL parameters but is weak for those of the other models. Finally, we show that the use of the SL measurements in galaxy clusters is a promising and powerful technique to constrain cosmological models. The advantage of this method is that cosmological parameters are estimated by modeling the SL features for each underlying cosmology. These estimations could be further improved by SL constraints coming from other galaxy clusters.

OSTI ID:
22518721
Journal Information:
Astrophysical Journal, Vol. 813, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English