skip to main content

Title: THE NONPOTENTIALITY OF CORONAE OF SOLAR ACTIVE REGIONS, THE DYNAMICS OF THE SURFACE MAGNETIC FIELD, AND THE POTENTIAL FOR LARGE FLARES

Flares and eruptions from solar active regions (ARs) are associated with atmospheric electrical currents accompanying distortions of the coronal field away from a lowest-energy potential state. In order to better understand the origin of these currents and their role in M- and X-class flares, I review all AR observations made with Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager and SDO/Atmospheric Imaging Assembly from 2010 May through 2014 October within ≈40° from the disk center. I select the roughly 4% of all regions that display a distinctly nonpotential coronal configuration in loops with a length comparable to the scale of the AR, and all that emit GOES X-class flares. The data for 41 regions confirm, with a single exception, that strong-field, high-gradient polarity inversion lines (SHILs) created during emergence of magnetic flux into, and related displacement within, pre-existing ARs are associated with X-class flares. Obvious nonpotentiality in the AR-scale loops occurs in six of ten selected regions with X-class flares, all with relatively long SHILs along their primary polarity inversion line, or with a long internal filament there. Nonpotentiality can exist in ARs well past the flux-emergence phase, often with reduced or absent flaring. I conclude that the dynamics of themore » flux involved in the compact SHILs is of pre-eminent importance for the large-flare potential of ARs within the next day, but that their associated currents may not reveal themselves in AR-scale nonpotentiality. In contrast, AR-scale nonpotentiality, which can persist for many days, may inform us about the eruption potential other than those from SHILs which is almost never associated with X-class flaring.« less
Authors:
 [1]
  1. Lockheed Martin Advanced Technology Center (A021S, Bldg. 252), 3251 Hanover Street, Palo Alto, CA 94304 (United States)
Publication Date:
OSTI Identifier:
22518554
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 820; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COMPARATIVE EVALUATIONS; ELECTRIC CURRENTS; FILAMENTS; MAGNETIC FIELDS; MAGNETIC FLUX; POTENTIALS; SOLAR CORONA; SOLAR FLARES; SUN; SURFACES