skip to main content

Title: SU-E-J-204: Can a Commercial System for MR-IGRT Be Used to Treat Patients Without Acquiring a CT Scan?

Patients treated using a magnetic-resonance image guided radiation therapy (MR-IGRT) system received both CT and MR simulations. During planning, the CT is used to determine relative electron density (RED) using a calibration table. This study aims to investigate the feasibility of MR-only treatments by comparing CT-computed dose distributions to those computed with combinations of water (1.0), lung (0.26), tissue (1.02), and bone (1.12) bulk RED overrides, and to identify the effects of the magnetic field on the RED-overridden doses. Methods: Four patients who received treatment using a commercial MR-IGRT system were analyzed (1 lung, 2 abdomen, and 1 pelvis). The clinical plans were computed using the first fraction MRI as primary, and the simulation CT as secondary for REDs. Plans were reoptimized using default bulk RED overrides (water/lung and tissue/lung for the lung patient, water/bone, tissue/bone, water only, and tissue only for the abdomen and pelvis patients). Additionally, each plan was re-optimized to include the static magnetic field. All plans were normalized to the same PTV coverage as the clinical plan. Dose-difference volumes and DVHs were computed for bulk density override plans, and 3D gamma analyses between each plan and its accompanying magnetic field plan were performed using 3%/3 mmmore » dose difference and distance-to-agreement criteria using the PTV and Skin as masking structures. Results: The average differences in PTV and organs-at-risk mean dose for all RED combinations tested were −0.19 Gy (−0.62 – 0.06 Gy) and −0.34 Gy (−1.76 – 0.33 Gy), respectively. The average PTV and Skin gamma pass rates for all RED combinations tested were 99.88% (99.5% – 100%) and 98. 35% (96.3% – 99.6%). No systematic differences in DVHs or isodoses were observed. Conclusions: It is likely that that a commercial MR-IGRT system may produce high quality treatment plans without the need for CT scans. Authors of this abstract are members of the Washington University Radiation Oncology department, which has a research agreement with ViewRay, Inc.« less
Authors:
; ; ; ;  [1]
  1. Washington University School of Medicine, St. Louis, MO (United States)
Publication Date:
OSTI Identifier:
22499308
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ABDOMEN; BONE TISSUES; BULK DENSITY; COMPUTERIZED TOMOGRAPHY; IMAGE PROCESSING; LUNGS; MAGNETIC FIELDS; NMR IMAGING; PATIENTS; PELVIS; RADIATION DOSE DISTRIBUTIONS; RADIATION DOSES; RADIOTHERAPY; SKELETON; SKIN