skip to main content

Title: Environmental stability of high-mobility indium-oxide based transparent electrodes

Large-scale deployment of a wide range of optoelectronic devices, including solar cells, critically depends on the long-term stability of their front electrodes. Here, we investigate the performance of Sn-doped In{sub 2}O{sub 3} (ITO), H-doped In{sub 2}O{sub 3} (IO:H), and Zn-doped In{sub 2}O{sub 3} (IZO) electrodes under damp heat (DH) conditions (85 °C, 85% relative humidity). ITO, IO:H capped with ITO, and IZO show high stability with only 3%, 9%, and 13% sheet resistance (R{sub s}) degradation after 1000 h of DH, respectively. For uncapped IO:H, we find a 75% R{sub s} degradation, due to losses in electron Hall mobility (μ{sub Hall}). We propose that this degradation results from chemisorbed OH- or H{sub 2}O-related species in the film, which is confirmed by thermal desorption spectroscopy and x-ray photoelectron spectroscopy. While μ{sub Hall} strongly degrades during DH, the optical mobility (μ{sub optical}) remains unchanged, indicating that the degradation mainly occurs at grain boundaries.
Authors:
; ; ; ;  [1]
  1. Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue de la Maladière 71b, Neuchatel 2002 (Switzerland)
Publication Date:
OSTI Identifier:
22499220
Resource Type:
Journal Article
Resource Relation:
Journal Name: APL Materials; Journal Volume: 3; Journal Issue: 11; Other Information: (c) 2015 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CHEMISORPTION; DESORPTION; DOPED MATERIALS; ELECTRODES; GRAIN BOUNDARIES; INDIUM OXIDES; MOBILITY; OPTOELECTRONIC DEVICES; SOLAR CELLS; STABILITY; X-RAY PHOTOELECTRON SPECTROSCOPY