skip to main content

Title: Symmetry-preserving contact interaction model for heavy-light mesons

We use a symmetry-preserving regularization method of ultraviolet divergences in a vector-vector contact interaction model for low-energy QCD. The contact interaction is a representation of nonperturbative kernels used Dyson-Schwinger and Bethe-Salpeter equations. The regularization method is based on a subtraction scheme that avoids standard steps in the evaluation of divergent integrals that invariably lead to symmetry violation. Aiming at the study of heavy-light mesons, we have implemented the method to the pseudoscalar π and K mesons. We have solved the Dyson-Schwinger equation for the u, d and s quark propagators, and obtained the bound-state Bethe-Salpeter amplitudes in a way that the Ward-Green-Takahashi identities reflecting global symmetries of the model are satisfied for arbitrary routing of the momenta running in loop integrals.
Authors:
; ;  [1] ;  [2]
  1. Instituto de Física Teórica, Universidade Estadual Paulista (Brazil)
  2. (Brazil)
Publication Date:
OSTI Identifier:
22499103
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1701; Journal Issue: 1; Conference: 11. conference on quark confinement and hadron spectrum, Saint Petersburg (Russian Federation), 8-12 Sep 2014; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BETHE-SALPETER EQUATION; BOUND STATE; EVALUATION; INTERACTIONS; KAONS; KERNELS; PROPAGATOR; QUANTUM CHROMODYNAMICS; ROUTING; S QUARKS; SYMMETRY BREAKING; ULTRAVIOLET DIVERGENCES; VECTORS