skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4936527· OSTI ID:22496216
; ; ;  [1]; ;  [2]
  1. EUROfusion-ENEA, Centro Ricerche Frascati, Unità Fusione, Frascati (Italy)
  2. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

OSTI ID:
22496216
Journal Information:
AIP Conference Proceedings, Vol. 1689, Issue 1; Conference: 21. topical conference on radio frequency power in plasmas, Lake Arrowhead, CA (United States), 27-29 Apr 2015; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English