skip to main content

SciTech ConnectSciTech Connect

Title: Annular spherically focused ring transducers for improved single-beam acoustical tweezers

The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long-more » (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.« less
Authors:
 [1]
  1. Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)
Publication Date:
OSTI Identifier:
22495002
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 119; Journal Issue: 6; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ACCIDENTS; ACOUSTICS; ANALYTICAL SOLUTION; COORDINATES; DIFFRACTION; ELASTICITY; PARTIAL WAVES; RINGS; SERIES EXPANSION; SPHERES; SPHERICAL CONFIGURATION; TRANSDUCERS; WAVE FUNCTIONS; WAVELENGTHS