skip to main content

SciTech ConnectSciTech Connect

Title: Origin of the c-axis ultraincompressibility of Mo{sub 2}GaC above about 15 GPa from first principles

The mechanical properties and structural evolution of Mo{sub 2}GaC are calculated by first-principles under pressure. Our results unexpectedly found that the c axis is always stiffer than a axis within 0–100 GPa. An ultraincompressibility of c axis within 15–60 GPa is observed, with a contraction of about 0.2 Å, slightly larger than that of a axis (0.14 Å). The abnormal expansion of c axis and the fast decrease in a axis above about 15 GPa and 70 GPa failed to induce the structural instability, whereas such behavior caused the elastic softening in many mechanical quantities. The shrinkage anomaly of c axis is closely reflected by the internal coordinate (u) shift of Mo atom as it shows three different slopes within 0–15 GPa, 20–60 GPa, and 70–100 GPa, respectively. The longest Mo-Mo bond is responsible for the unusual shrinkage of c-axis under pressure as they experience nearly identical pressure dependences, whereas the a axis presents certain response with the variation of C-Mo bond particularly at 70 GPa. The electronic properties are investigated, including the energy band and density of states, and so on. At G point of K-M line, the energy decreases at 10 GPa first and increases at 30 GPa subsequently, the critical point is at about 15 GPa, with respective values ofmore » −0.17 of 0 GPa, −0.18 of 10 GPa, −0.16 of 15 GPa, and −0.13 of 30 GPa, respectively. This alternative energy change of G point, which is the symmetry center of the rhombic parallelogram of Ga atoms and the midpoint of the two bonded Mo atoms, convincingly reveal the origin of the anomalous ultraincompressibility of c axis as the Mo-Mo bond length shrinkage has to overcome the increasing energy barrier height. The Mo-Mo bond population and the electronegativity investigations of the Mo atom further reveal the most likely origin of the ultraincompressibility of c axis. This interesting result expects further experimental confirmation as this is the first nanolaminate ceramics compound presenting quite low-pressure axial ultraincompressibility.« less
Authors:
 [1] ;  [2] ; ; ;  [3] ;  [4] ;  [1] ;  [5]
  1. College of Science, Northeastern University, Shenyang 110004 (China)
  2. (China)
  3. School of Science, Zhejiang University of Technology, Hangzhou 310023 (China)
  4. College of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China)
  5. College of Engineering and Technology, Neijiang Normal University, Neijiang 641112 (China)
Publication Date:
OSTI Identifier:
22494874
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 119; Journal Issue: 1; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ATOMS; BOND LENGTHS; CERAMICS; CONTRACTION; DENSITY OF STATES; EXPANSION; MECHANICAL PROPERTIES; PRESSURE DEPENDENCE; PRESSURE RANGE GIGA PA; SHRINKAGE