skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced electrocaloric effect in displacive-type organic ferroelectrics

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4928165· OSTI ID:22494696
; ;  [1]
  1. Department of Physics, China Three Gorges University, YiChang 443002 (China)

We explore the intrinsic feature of electrocaloric effect (ECE) accompanied by ferroelectric (FE)-paraelectric (PE) transition for displacive-type organic ferroelectrics using Green's function theory. It is demonstrated that decreasing elastic constant K or increasing spin-lattice coupling λ can enhance the ECE, as well as polarization P and transition temperature T{sub C}. Indeed, one expects that the optimal operating temperature for solid-state refrigeration is around room temperature, at which the ECE achieves its maximum. As T{sub C} is tuned to ∼310 K, it presents larger ECE response and remanent polarization with lower coercive field for smaller K value, suggesting that well flexible displacive-type organic ferroelectrics are excellent candidates both for electric cooling and data storage in the design of nonvolatile FE random-access memories. Furthermore, in an electric field, it provides a bridge between a Widom line that denotes FE-PE crossover above T{sub C} and a metaelectric transition line below T{sub C} that demonstrates an FE switching behavior with an antiparallel field.

OSTI ID:
22494696
Journal Information:
Journal of Applied Physics, Vol. 118, Issue 5; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English