skip to main content

SciTech ConnectSciTech Connect

Title: Bismuth pyrochlore thin films for dielectric energy storage

Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate were fabricated using chemical solution deposition. This family of materials exhibited moderate relative permittivities between 55 ± 2 and 145 ± 5 for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 ± 0.0001. Increases in the concentration of the tantalum end member increased the dielectric breakdown strength. For example, at 10 kHz, the room temperature breakdown strength of bismuth zinc niobate was 5.1 MV/cm, while that of bismuth zinc tantalate was 6.1 MV/cm. This combination of a high breakdown strength and a moderate permittivity led to a high discharged energy storage density for all film compositions. For example, at a measurement frequency of 10 kHz, bismuth zinc niobate exhibited a maximum recoverable energy storage density of 60.8 ± 2.0 J/cm{sup 3}, while bismuth zinc tantalate exhibited a recoverable energy storage density of 60.7 ± 2.0 J/cm{sup 3}. Intermediate compositions of bismuth zinc niobate tantalate offered higher energy storage densities; at 10 mol. % tantalum, the maximum recoverable energy storage density was ∼66.9 ± 2.4 J/cm{sup 3}.
Authors:
;  [1]
  1. Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)
Publication Date:
OSTI Identifier:
22494692
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 118; Journal Issue: 5; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 36 MATERIALS SCIENCE; ABUNDANCE; BISMUTH COMPOUNDS; BREAKDOWN; DENSITY; DEPOSITION; DIELECTRIC MATERIALS; ENERGY STORAGE; KHZ RANGE; MATHEMATICAL SOLUTIONS; NIOBATES; PERMITTIVITY; PYROCHLORE; TANTALATES; TANTALUM; TEMPERATURE RANGE 0273-0400 K; THIN FILMS; ZINC COMPOUNDS