skip to main content

SciTech ConnectSciTech Connect

Title: Magnetically tunable alternating current electrical properties of x La{sub 0.7}Sr{sub 0.3}MnO{sub 3}–(1 − x) ErMnO{sub 3} (x = 0.1, 0.3, and 0.5) multiferroic nanocomposite

Detailed magnetically tunable ac electrical properties of x La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO)–(1 − x) ErMnO{sub 3} (EMO) (x = 0.1, 0.3, and 0.5) multiferroic nanocomposites have been studied at 300 K in presence of varying magnetic field (H{sub appl}), applied both in parallel and perpendicular configuration with respect to the measuring electric field. AC electrical properties have exhibited significant variation with H{sub appl} for all composites, whereas for parallel configuration of H{sub appl} such effect is very feeble for x = 0.3 composite. We have attributed this anisotropic behavior to the demagnetization effect in the sample. In contrast, for x = 0.1 and 0.5 composites, no such anisotropy effect is experimentally evidenced. Impedance and real part of impedance have been found to decrease with H{sub appl} at low frequency (f) region. We attribute this observation to the depinning of the magnetic domain walls from the grain boundaries pinning centers and thereby enhancing the spin dependent transport in the composite. For x = 0.3 composite, Nyquist plots have been fitted considering dominant contributions of LSMO and EMO grain boundaries and the interface region between them. However, for x = 0.1 composite, it corresponds to EMO grain boundaries and grain boundary interface region. The relaxation frequency (f{sub R}) is observed to shift at higher/lowermore » f region in perpendicular/parallel configuration of H{sub appl} for x = 0.3 composite. This opposite variation of f{sub R}s with H{sub appl} for perpendicular and parallel configurations has been attributed to two competing factors of H{sub appl} induced enhancement of inductive part and H{sub appl} enhanced spin dependent transport causing fast relaxation processes in the sample. For x = 0.1 composite, in both configurations of H{sub appl}, f{sub R}s is shifting towards high f region, which has been discussed in terms of dominant role of spin dependent transport.« less
Authors:
; ; ; ;  [1] ;  [2]
  1. Department of Physics, National Institute of Technology Agartala, Tripura 799046 (India)
  2. Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India)
Publication Date:
OSTI Identifier:
22494648
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 118; Journal Issue: 4; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALTERNATING CURRENT; ANISOTROPY; CONFIGURATION; DEMAGNETIZATION; ELECTRIC FIELDS; ELECTRICAL PROPERTIES; GRAIN BOUNDARIES; IMPEDANCE; MAGNETIC FIELDS; NANOCOMPOSITES; RELAXATION; SPIN