skip to main content

Title: Characterization of LiFePO{sub 4} cathode by addition of graphene for lithium ion batteries

The improvement of LiFePO{sub 4} (LFP) cathode performance has been performed by addition of Graphene (LFP+Graphene). The cathode was prepared from the active material with 5 wt % graphene and 10 wt % polyvinylidene fluoride in an n-methyl pyrrolidone solvent. Another cathode material used only 5% artificial graphite for comparison (LFP+Graphite). The crystal structure, microstructure, electronic conductivity, electrochemical impedance spectroscopy (EIS) of the cathodes were characterized by X-ray diffraction, SEM, and Impedance spectroscopy, respectively. Two half cell coin batteries were assembled using a lithium metal as an anode and LiPf{sub 6} as an electrolyte, and two cathodes (LFP+Graphene) and (LFP+Graphite). Charge discharge performance of battery was characterized by Battery analyser (BTS 8). The electronic conductivity of cathode with grapheme increased of about one order magnitude compared with the only cathode with graphite, namely from 1.97E-7S/cm (LFP+Graphite) to 1.92E-6S/cm (LFP+Graphene). The charge-discharge capacity after 10{sup th} cycles of LiFePO{sub 4} with graphene decreased of about 0.68% from 114.3 mAh/g to113.1 mAh/g, while LFP with graphite decreased of about 2.84% from 110.2 mAh/g to 107.1 mAh, at 0.1C-rates. It could be concluded that the addition of graphene has increased the ionic conductivity, and improved performance of the LFP lithium ion battery, suchmore » as higher capacity and better efficiency.« less
Authors:
;  [1]
  1. Center for Science and Technology Advanced Materials, National Nuclear Energy Agency Kawasan Puspiptek Serpong, Tangerang Selatan 15314 (Indonesia)
Publication Date:
OSTI Identifier:
22494621
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1710; Journal Issue: 1; Conference: NNS2015: 6. nanoscience and nanotechnology symposium, Surakarta (Indonesia), 4-5 Nov 2015; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANODES; CAPACITY; CATHODES; CRYSTAL STRUCTURE; ELECTROCHEMISTRY; ELECTROLYTES; GRAPHENE; GRAPHITE; IMPEDANCE; LITHIUM ION BATTERIES; MICROSTRUCTURE; ORGANIC FLUORINE COMPOUNDS; PERFORMANCE; POLYVINYLS; PYRROLIDONES; SCANNING ELECTRON MICROSCOPY; SPECTROSCOPY; X-RAY DIFFRACTION