skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The influence of reduced graphene oxide on electrical conductivity of LiFePO{sub 4}-based composite as cathode material

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4941471· OSTI ID:22494604
; ; ;  [1];  [1]
  1. Physics of Electronic Materials Research Division, Department of Physics, Institut Teknologi Bandung, Bandung 40132 Indonesia (Indonesia)

LiFePO{sub 4} is fascinating cathode active materials for Li-ion batteries application because of their high electrochemical performance such as a stable voltage at 3.45 V and high specific capacity at 170 mAh.g{sup −1}. However, their low intrinsic electronic conductivity and low ionic diffusion are still the hindrance for their further application on Li-ion batteries. Therefore, the efforts to improve their conductivity are very important to elevate their prospecting application as cathode materials. Herein, we reported preparation of additional of reduced Graphene Oxide (rGO) into LiFePO{sub 4}-based composite via hydrothermal method and the influence of rGO on electrical conductivity of LiFePO{sub 4}−based composite by varying mass of rGO in composition. Vibration of LiFePO{sub 4}-based composite was detected on Fourier Transform Infrared Spectroscopy (FTIR) spectra, while single phase of LiFePO{sub 4} nanocrystal was observed on X-Ray Diffraction (XRD) pattern, it furthermore, Scanning Electron Microscopy (SEM) images showed that rGO was distributed around LiFePO4-based composite. Finally, the 4-point probe measurement result confirmed that the optimum electrical conductivity is in additional 2 wt% rGO for range 1 to 2 wt% rGO.

OSTI ID:
22494604
Journal Information:
AIP Conference Proceedings, Vol. 1710, Issue 1; Conference: NNS2015: 6. nanoscience and nanotechnology symposium, Surakarta (Indonesia), 4-5 Nov 2015; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English