skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation on radiation protection aspect and radiological risk at Mukim Belanja repository

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4940110· OSTI ID:22494562
;  [1]
  1. Nuclear Technology Research Centre, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia)

Asian Rare Earth (ARE) is a locally incorporated company that operated a mineral processing operation to extract rare earth element. ARE has received much attention from the public since the beginning of their operation until the work of decommissioning and decontamination of the plant. Due to the existence of Naturally Occurring Radioactive Material (NORM) in the residue, the decommissioning and disposal was done by the company in collaboration with the Perak State Government and the Atomic Energy Licensing Board (AELB). The main objective of this study is to review the level of compliance of the existing Radiation Protection Regulations enforced by AELB particularly in the achievement of allowed exposure dose limit. The next objective was to study the impact of the construction of the Mukim Belanja Repository to workers and public. This study was conducted by analyzing documents that were issued and conducting the area monitoring using a Geiger Muller detector (GM) and Sodium Iodide (NaI(Tl)) survey meters. The measurements were made at 5 cm and 1 m from the ground surface at 27 measurement stations. The external doses measured were within the background levels of the surrounding area. The annual effective dose using the highest reading at 5 cm and 1 m from ground surface by GM detector was calculated to be 1.36 mSv/year and 1.21 mSv/year respectively. Whereas the annual effective dose using the highest reading at 5 cm and 1 m from ground surface by using NaI(Tl) detector was calculated to be 3.31 mSv/year and 2.83 mSv/year respectively. The calculated cancer risks from the study showed that the risk is small compared with the risks derived from natural radiation based on global annual radiation dose to humans. This study therefore indicated that the repository is able to constrain the dose exposure from the disposed NORM waste. The study also revealed that the construction of the repository has complied with all the rules and regulations subjected to it. The exposed dose received by the radiation and the public workers during the construction of the repository were below the annual limit i.e. 20 mSv/year and 1mSv/year respectively.

OSTI ID:
22494562
Journal Information:
AIP Conference Proceedings, Vol. 1704, Issue 1; Conference: iNuSTEC2015: International muclear science, technology and engineering conference 2015, Negeri Sembilan (Malaysia), 17-19 Aug 2015; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English