skip to main content

SciTech ConnectSciTech Connect

Title: Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.
Authors:
; ; ;  [1]
  1. Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)
Publication Date:
OSTI Identifier:
22494461
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1699; Journal Issue: 1; Conference: International conference of chemical and material engineering (ICCME) 2015: Green technology for sustainable chemical products and processes, Semarang (Indonesia), 29-30 Sep 2015; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABSORPTION; ANALYTICAL SOLUTION; COMPARATIVE EVALUATIONS; DIFFUSION; EXCITONS; GRAPHENE; HETEROJUNCTIONS; LAYERS; OPTIMIZATION; PHOTONS; SILICON; SIMULATION; SOLAR CELLS; THICKNESS; THIN FILMS; TITANIUM OXIDES