skip to main content

Title: Tailoring the properties of polymers via formation of a mesophase

The combination of the control of the concentration of stereodefects in isotactic polypropylene using metallocene catalysts and the crystallization via the mesophase is a strategy to tailor the mechanical properties. Stiff materials, flexible materials, and thermoplastic elastomers can be produced depending only on the concentration of rr stereodefects. We show that in the case of isotactic polypropylene (iPP) the material properties can be finely tuned at molecular level via formation of a solid mesophase, characterized by an intermediate degree of order between amorphous and crystalline state. The effect of different degree of stereoregularity on the mesophase formation, thermal stability, morphology, is analyzed at different length scales, using different technique including wide angle X-ray scattering, atomic and optical microscopy. Different morphologies are observed depending on the stereoregularity and conditions of crystallization. In contrast to the lamellar morphology of crystals normally obtained from the melt, the solid mesophase show a nodular morphology.
Authors:
; ; ;  [1]
  1. Dipartimento di Scienze Chimiche, Università Degli Studi di Napoli “Federico II,” Complesso Monte S. Angelo, Via Cintia,80126 Napoli (Italy)
Publication Date:
OSTI Identifier:
22494364
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1695; Journal Issue: 1; Conference: GT70 international conference on polymer processing with resulting morphology and properties: Feet in the present and eyes at the future, Salerno (Italy), 15-17 Oct 2015; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ABUNDANCE; CATALYSTS; CONCENTRATION RATIO; CRYSTALLIZATION; CRYSTALS; ELASTOMERS; MECHANICAL PROPERTIES; MORPHOLOGY; OPTICAL MICROSCOPY; POLYPROPYLENE; THERMOPLASTICS; X-RAY DIFFRACTION