skip to main content

Title: Entanglement of formation in two-mode Gaussian systems in a thermal environment

In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in a separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.
Authors:
;  [1]
  1. National Institute of Physics and Nuclear Engineering, P.O.Box MG-6, Bucharest-Magurele (Romania)
Publication Date:
OSTI Identifier:
22494346
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1694; Journal Issue: 1; Conference: TIM14 physics conference on physics without frontiers, Timisoara (Romania), 20-22 Nov 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ASYMPTOTIC SOLUTIONS; DEATH; GAUSSIAN PROCESSES; INHIBITION; MATRICES; QUANTUM ENTANGLEMENT; SYMMETRY