skip to main content

SciTech ConnectSciTech Connect

Title: SU-E-J-104: Evaluation of Accuracy for Various Deformable Image Registrations with Virtual Deformation QA Software

Purpose: The accuracy of deformable image registration (DIR) has a significant dosimetric impact in radiation treatment planning. We evaluated accuracy of various DIR algorithms using virtual deformation QA software (ImSimQA, Oncology System Limited, UK). Methods: The reference image (Iref) and volume (Vref) was first generated with IMSIMQA software. We deformed Iref with axial movement of deformation point and Vref depending on the type of deformation that are the deformation1 is to increase the Vref (relaxation) and the deformation 2 is to decrease the Vref (contraction) .The deformed image (Idef) and volume (Vdef) were inversely deformed to Iref and Vref using DIR algorithms. As a Result, we acquired deformed image (Iid) and volume (Vid). The DIR algorithms were optical flow (HS, IOF) and demons (MD, FD) of the DIRART. The image similarity evaluation between Iref and Iid was calculated by Normalized Mutual Information (NMI) and Normalized Cross Correlation (NCC). The value of Dice Similarity Coefficient (DSC) was used for evaluation of volume similarity. Results: When moving distance of deformation point was 4 mm, the value of NMI was above 1.81 and NCC was above 0.99 in all DIR algorithms. Since the degree of deformation was increased, the degree of image similaritymore » was decreased. When the Vref increased or decreased about 12%, the difference between Vref and Vid was within ±5% regardless of the type of deformation. The value of DSC was above 0.95 in deformation1 except for the MD algorithm. In case of deformation 2, that of DSC was above 0.95 in all DIR algorithms. Conclusion: The Idef and Vdef have not been completely restored to Iref and Vref and the accuracy of DIR algorithms was different depending on the degree of deformation. Hence, the performance of DIR algorithms should be verified for the desired applications.« less
Authors:
; ; ; ;  [1] ;  [2] ; ;  [3]
  1. University of Science and Technology, Daejeon (Korea, Republic of)
  2. (Korea, Republic of)
  3. Korea institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)
Publication Date:
OSTI Identifier:
22494119
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACCURACY; ALGORITHMS; BIOMEDICAL RADIOGRAPHY; CALORIMETRY; COMPUTER CODES; IMAGE PROCESSING; IMAGES; PERFORMANCE; PLANNING