skip to main content

Title: SU-E-J-46: Evaluation of the Accuracy of a Six Degree of Freedom Robotic Couch Using ConeBeam CT Images of the Isocal Phantom

Purpose The accuracy of Varian PerfectPitch six degree of freedom (DOF) robotic couch was examined using Varian Isocal phantom and cone-beam CT (CBCT) system. Methods CBCT images of the Isocal phantom were taken at different pitch and roll angles. The pitch and roll angles were varied from 357 to 3 degrees in one degree increments by input from service console, generating a total of 49 combinations with couch angle (yaw) zero. The center positions of the 16 tungsten carbide BBs contained in the Isocal were determined with in-house image processing software. Expected BBs positions at different rotation angles were determined mathematically by applying a combined translation/rotation operator to BB positions at zero pitch and roll values. A least square method was used to minimize the difference between the expected BB positions and their measured positions. In this way rotation angles were obtained and compared with input values from the console. Results A total of 49 CBCT images with voxel sizes 0.51 mm × 0.51 mm × 1 mm were used in analysis. Among the 49 calculations, the maximum rotation angle differences were 0.1 degree, 0.15 degree, and 0.09 degree, for pitch, roll, and couch rotation, respectively. The mean ± standard-deviationmore » angle differences were 0.028±0.001 degree, −0.043±0.003 degree, and −0.009±0.001 degree, for pitch, roll, and couch rotation, respectively. The maximum isocenter shifts were 0.3 mm, 0.5 mm, 0.4 mm in x, y, z direction respectively following IEC6127 convention. The mean isocenter shifts were 0.07±0.02 mm, −0.05±0.06 mm, and −0.12±0.02 mm in x, y and z directions. Conclusion The accuracy of the Varian PerfectPitch six DOF couch was studied with CBCTs of the Isocal phantom. The rotational errors were less than 0.15 degree and isocenter shifts were less than 0.5 mm in any direction. This accuracy is sufficient for stereotactic radiotherapy clinical applications.« less
Authors:
; ; ; ; ; ; ; ; ; ; ;  [1]
  1. University of Nebraska Medical Center, Omaha, NE (United States)
Publication Date:
OSTI Identifier:
22494069
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACCURACY; COMPUTERIZED TOMOGRAPHY; DEGREES OF FREEDOM; IMAGE PROCESSING; IMAGES; PHANTOMS; PITCHES; RADIOTHERAPY