skip to main content

Title: SU-E-I-82: PET Radiopharmaceuticals for Prostate Cancer Imaging: A Review

Purpose: The aim of this work was to review new and clinical practice PET radiopharmaceuticals for prostate cancer imaging. Methods: PET radiopharmaceuticals were reviewed on the main databases. Availability, dosimetry, accuracy and limitations were considered. Results: The following radioisotopes with respective physical half-life and mean positron energy were found: {sup 18}F (109,7 min, 249,8 keV), {sup 89}Zr (78,4 hs, 395,5 keV), {sup 11}C (20,4 min, 385,7 keV) and {sup 68}Ga (67,8 min, 836 keV). {sup 68}Ga was the only one not produced by cyclotron. Radiopharmaceuticals uptake by glucose metabolism ({sup 18}F-FDG), lipogenesis ({sup 11}C-Choline and {sup 11}C-Acetate), amino acid transport (Anti-{sup 18}F-FACBC), bone matrix ({sup 18}F-NaF), prostatespecific membrane antigen ({sup 68}Ga-PSMA and {sup 89}Zr-J591), CXCR receptors ({sup 89}Ga-Pentixafor), adrenal receptors ({sup 18}F-FDHT) and gastrin release peptide receptor (bombesin analogue). Most of radiopharmaceuticals are urinary excretion, so bladder is the critical organ. 11C-choline (pancreas), Anti-{sup 18}FFACBC (liver) and {sup 18}F-FBDC (stomach wall) are the exception. Higher effective dose was seen {sup 18}F-NaF (27 μSv/MBq) while the lowest was {sup 11}CAcetate (3,5 μSv/MBq). Conclusion: Even though {sup 18}F-FDG has a large availability its high urinary excretion and poor uptake to slow growing disease offers weak results for prostate cancer. Better accuracy ismore » obtained when {sup 18}F-NaF is used for bone metastatic investigation although physicians tend to choose bone scintigraphy probably due to its cost and practice. Many guidelines in oncology consider {sup 11}C or {sup 18}F labeled with Choline the gold standard for biochemical relapse after radical treatment. Local, lymph node and distant metastatic relapse can be evaluated at same time with this radiopharmaceutical. There is no consensus over bigger urinary excretion for {sup 18}F labeling. Anti-{sup 18}F-FACBC, {sup 68}Ga-PSMA and {sup 68}Ga-Pentixafor are demonstrating good results but more researches are needed. While PSMA imaging seems to be independent of PSA level, one choline limitation, anti-{sup 18}F-FACBC adds value because imaging any disease stage. {sup 68}Ga-Petixafor is being tested as theranostics marker integrating molecular image and therapy.« less
Authors:
 [1] ;  [2] ;  [1] ;  [3]
  1. Delfin Farmacos e Derivados Ltda, Lauro De Freitas, Bahia (Brazil)
  2. (Brazil)
  3. Escola Bahiana de Medicina e Saude Publica, Salvador, Bahia (Brazil)
Publication Date:
OSTI Identifier:
22494024
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; BIOMEDICAL RADIOGRAPHY; CARBON 11; CHOLINE; EXCRETION; FLUORINE 18; GALLIUM 68; GASTRIN; GLUCOSE; NEOPLASMS; PANCREAS; POSITRON COMPUTED TOMOGRAPHY; PROSTATE; RADIONUCLIDE KINETICS; RADIOPHARMACEUTICALS; RECEPTORS; REVIEWS; SKELETON; SODIUM FLUORIDES; ZIRCONIUM 89