skip to main content

SciTech ConnectSciTech Connect

Title: Direct imaging of structural heterogeneity of the melt-spun Fe{sub 85.2}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 0.8} alloy

A structural heterogeneity of the melt-spun Fe{sub 85.2}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 0.8} alloy has been studied by spherical aberration (C{sub s}) corrected high-resolution transmission electron microscopy. Hollow-cone illumination imaging revealed that the density of coherent scattering regions in the as-quenched Fe{sub 85.2}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 0.8} alloy is much higher than that in the Fe{sub 76}Si{sub 9}B{sub 10}P{sub 5} bulk metallic glass. According to the C{sub s}-corrected TEM, crystalline atomic clusters, typically of ∼1 nm in diameter, are densely distributed in an amorphous matrix of Fe{sub 85.2}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 0.8} alloy. Observation of four-fold and six-fold atomic arrangements of these clusters implies existence of Fe clusters with the body centered cubic structure. These Fe clusters must be responsible for the formation of ultrahigh-density α-Fe nanocrystals produced by post-annealing.
Authors:
; ;  [1] ;  [2]
  1. Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)
  2. Institute of Scientific and Industrial Research, Osaka University, Ibaraki 567-0047 (Japan)
Publication Date:
OSTI Identifier:
22493923
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 5; Journal Issue: 6; Other Information: (c) 2015 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ANNEALING; ATOMIC CLUSTERS; BCC LATTICES; BORON ALLOYS; COHERENT SCATTERING; COPPER ALLOYS; CRYSTALS; DENSITY; ILLUMINANCE; IRON BASE ALLOYS; METALLIC GLASSES; NANOSTRUCTURES; RESOLUTION; SILICON ALLOYS; TRANSMISSION ELECTRON MICROSCOPY