skip to main content

SciTech ConnectSciTech Connect

Title: Structural stability and O{sub 2} dissociation on nitrogen-doped graphene with transition metal atoms embedded: A first-principles study

By using first-principles calculations, we investigate the structural stability of nitrogen-doped (N-doped) graphene with graphitic-N, pyridinic-N and pyrrolic-N, and the transition metal (TM) atoms embedded into N-doped graphene. The structures and energetics of TM atoms from Sc to Ni embedded into N-doped graphene are studied. The TM atoms at N{sub 4}V {sub 2} forming a 4N-centered structure shows the strongest binding and the binding energies are more than 7 eV. Finally, we investigate the catalytic performance of N-doped graphene with and without TM embedding for O{sub 2} dissociation, which is a fundamental reaction in fuel cells. Compared to the pyridinic-N, the graphitic-N is more favorable to dissociate O{sub 2} molecules with a relatively low reaction barrier of 1.15 eV. However, the catalytic performance on pyridinic-N doped structure can be greatly improved by embedding TM atoms, and the energy barrier can be reduced to 0.61 eV with V atom embedded. Our results provide the stable structure of N-doped graphene and its potential applications in the oxygen reduction reactions.
Authors:
; ; ; ;  [1]
  1. Functional Nano & Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123 (China)
Publication Date:
OSTI Identifier:
22493904
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 5; Journal Issue: 6; Other Information: (c) 2015 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; BINDING ENERGY; COMPARATIVE EVALUATIONS; CRYSTAL STRUCTURE; DISSOCIATION; DOPED MATERIALS; EV RANGE; GRAPHENE; GRAPHITE; MOLECULES; NITROGEN; OXYGEN; PERFORMANCE; PHASE STABILITY; REDUCTION; TRANSITION ELEMENTS