skip to main content

SciTech ConnectSciTech Connect

Title: Quasi-degenerate perturbation theory using matrix product states

In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.
Authors:
;  [1] ;  [1] ;  [2]
  1. Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany)
  2. (United Kingdom)
Publication Date:
OSTI Identifier:
22493655
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 144; Journal Issue: 3; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; BENCHMARKS; COVALENCE; DIAGRAMS; ELECTRONS; ETHYLENE; EXCITED STATES; HAMILTONIANS; LITHIUM FLUORIDES; PERTURBATION THEORY; POTENTIAL ENERGY; SPACE; VALENCE