skip to main content

Title: Many-body effects and excitonic features in 2D biphenylene carbon

The remarkable excitonic effects in low dimensional materials in connection to large binding energies of excitons are of great importance for research and technological applications such as in solar energy and quantum information processing as well as for fundamental investigations. In this study, the unique electronic and excitonic properties of the two dimensional carbon network biphenylene carbon were investigated with GW approach and the Bethe-Salpeter equation accounting for electron correlation effects and electron-hole interactions, respectively. Biphenylene carbon exhibits characteristic features including bright and dark excitons populating the optical gap of 0.52 eV and exciton binding energies of 530 meV as well as a technologically relevant intrinsic band gap of 1.05 eV. Biphenylene carbon’s excitonic features, possibly tuned, suggest possible applications in the field of solar energy and quantum information technology in the future.
Authors:
; ; ; ;  [1] ;  [2]
  1. Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 751 20 Uppsala (Sweden)
  2. Department of Chemistry–BMC, Uppsala University, P.O. Box 576, 751 23 Uppsala (Sweden)
Publication Date:
OSTI Identifier:
22493648
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 144; Journal Issue: 2; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BETHE-SALPETER EQUATION; BINDING ENERGY; BIPHENYL; CARBON; DATA PROCESSING; ELECTRON CORRELATION; ENERGY GAP; EV RANGE; EXCITONS; HOLES; MANY-BODY PROBLEM; QUANTUM INFORMATION; TWO-DIMENSIONAL CALCULATIONS; TWO-DIMENSIONAL SYSTEMS