skip to main content

Title: Nuclear spin noise in NMR revisited

The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.
Authors:
;  [1] ; ;  [2]
  1. Laboratoire d’Ingénierie des Systèmes Accélérateurs et des Hyperfréquences, SACM, CEA, Université Paris-Saclay, CEA/Saclay, F-91191 Gif-sur-Yvette (France)
  2. Laboratoire Structure et Dynamique par Résonance Magnétique, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA/Saclay, F-91191 Gif-sur-Yvette (France)
Publication Date:
OSTI Identifier:
22493594
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 143; Journal Issue: 9; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; COMPARATIVE EVALUATIONS; IMPEDANCE; NOISE; NUCLEAR MAGNETIC RESONANCE; PROBES; SIGNALS; SPIN; TUNING; VARIATIONS