skip to main content

SciTech ConnectSciTech Connect

Title: Full-dimensional, high-level ab initio potential energy surfaces for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2} with application to hydrogen clathrate hydrates

New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H{sub 2}(H{sub 2}O) two-body and H{sub 2}(H{sub 2}O){sub 2} three-body potentials. The database for H{sub 2}(H{sub 2}O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are compared to computationally faster ones obtained via “purified” symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H{sub 2}, H{sub 2}O, and (H{sub 2}O){sub 2}, to obtain full PESs for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2}. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H{sub 2}(H{sub 2}O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathratemore » hydrates, illustrated for H{sub 2}@(H{sub 2}O){sub 20}. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H{sub 2} from the calculated equilibrium structure.« less
Authors:
; ; ;  [1]
  1. Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)
Publication Date:
OSTI Identifier:
22493574
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 143; Journal Issue: 8; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CLATHRATES; COMPARATIVE EVALUATIONS; COVALENCE; DIFFUSION; DIMERS; DISSOCIATION ENERGY; HYDRATES; HYDROGEN; MONTE CARLO METHOD; POLYNOMIALS; POTENTIAL ENERGY; SURFACES; THREE-BODY PROBLEM; TWO-BODY PROBLEM; WATER