skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Making sense of the conflicting magic numbers in WSi{sub n} clusters

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4928755· OSTI ID:22493548
; ;  [1]
  1. Department of Physics, Virginia Commonwealth University, 701 West Grace Street, Richmond, Virginia 23220 (United States)

First principles studies on the geometric structure, stability, and electronic structure of WSi{sub n} clusters, n = 6-16, have been carried out to show that the observed differing “magic sizes” for WSi{sub n} clusters are associated with the nature of the growth processes. The WSi{sub 12} cluster, observed as a magic species in experiments reacting transition metal ions with silane, is not stable due to a filled shell of 18 electrons, as previously proposed, but due to its atomic structure that arrests further growth because of an endohedral transition metal site. In fact, it is found that all of these clusters, n = 6-16, have filled 5d shells except for WSi{sub 12}, which has a 5d{sup 8} configuration that is caused by crystal field splitting. The stability of WSi{sub 15}{sup +}, observed as highly stable in clusters generated by vaporizing silicon and metal carbonyls, is shown to be associated with a combination of geometric and electronic features. The findings are compared with previous results on CrSi{sub n} clusters.

OSTI ID:
22493548
Journal Information:
Journal of Chemical Physics, Vol. 143, Issue 7; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English