skip to main content

SciTech ConnectSciTech Connect

Title: Semiclassical initial value representation for the quantum propagator in the Heisenberg interaction representation

One of the challenges facing on-the-fly ab initio semiclassical time evolution is the large expense needed to converge the computation. In this paper, we suggest that a significant saving in computational effort may be achieved by employing a semiclassical initial value representation (SCIVR) of the quantum propagator based on the Heisenberg interaction representation. We formulate and test numerically a modification and simplification of the previous semiclassical interaction representation of Shao and Makri [J. Chem. Phys. 113, 3681 (2000)]. The formulation is based on the wavefunction form of the semiclassical propagation instead of the operator form, and so is simpler and cheaper to implement. The semiclassical interaction representation has the advantage that the phase and prefactor vary relatively slowly as compared to the “standard” SCIVR methods. This improves its convergence properties significantly. Using a one-dimensional model system, the approximation is compared with Herman-Kluk’s frozen Gaussian and Heller’s thawed Gaussian approximations. The convergence properties of the interaction representation approach are shown to be favorable and indicate that the interaction representation is a viable way of incorporating on-the-fly force field information within a semiclassical framework.
Authors:
;  [1]
  1. Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel)
Publication Date:
OSTI Identifier:
22493307
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 143; Journal Issue: 22; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COMPARATIVE EVALUATIONS; CONVERGENCE; EVOLUTION; HEISENBERG PICTURE; MODIFICATIONS; ONE-DIMENSIONAL CALCULATIONS; PROPAGATOR; SEMICLASSICAL APPROXIMATION; WAVE FUNCTIONS