skip to main content

Title: First-principles equation of state and electronic properties of warm dense oxygen

We perform all-electron path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD) calculations to explore warm dense matter states of oxygen. Our simulations cover a wide density-temperature range of 1–100 g cm{sup −3} and 10{sup 4}–10{sup 9} K. By combining results from PIMC and DFT-MD, we are able to compute pressures and internal energies from first-principles at all temperatures and provide a coherent equation of state. We compare our first-principles calculations with analytic equations of state, which tend to agree for temperatures above 8 × 10{sup 6} K. Pair-correlation functions and the electronic density of states reveal an evolving plasma structure and ionization process that is driven by temperature and density. As we increase the density at constant temperature, we find that the ionization fraction of the 1s state decreases while the other electronic states move towards the continuum. Finally, the computed shock Hugoniot curves show an increase in compression as the first and second shells are ionized.
Authors:
; ;  [1] ;  [1] ;  [2]
  1. Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States)
  2. (United States)
Publication Date:
OSTI Identifier:
22493166
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 143; Journal Issue: 16; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; COMPARATIVE EVALUATIONS; DENSITY; DENSITY FUNCTIONAL METHOD; DENSITY OF STATES; ELECTRONS; EQUATIONS OF STATE; MOLECULAR DYNAMICS METHOD; MONTE CARLO METHOD; OXYGEN; SIMULATION; TEMPERATURE RANGE