skip to main content

Title: Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture

Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system’s power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle’s relevance in parameter regimes connected to natural light-harvesting structures.
Authors:
; ;  [1]
  1. Institut für Theoretische Physik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm (Germany)
Publication Date:
OSTI Identifier:
22493140
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 143; Journal Issue: 15; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; DEGREES OF FREEDOM; EXCITATION; HARVESTING; HEAT ENGINES; INTERACTIONS