skip to main content

SciTech ConnectSciTech Connect

Title: Resolving the biophysics of axon transmembrane polarization in a single closed-form description

When a depolarizing event occurs across a cell membrane there is a remarkable change in its electrical properties. A complete depolarization event produces a considerably rapid increase in voltage that propagates longitudinally along the axon and is accompanied by changes in axial conductance. A dynamically changing magnetic field is associated with the passage of the action potential down the axon. Over 75 years of research has gone into the quantification of this phenomenon. To date, no unified model exist that resolves transmembrane polarization in a closed-form description. Here, a simple but formative description of propagated signaling phenomena in the membrane of an axon is presented in closed-form. The focus is on using both biophysics and mathematical methods for elucidating the fundamental mechanisms governing transmembrane polarization. The results presented demonstrate how to resolve electromagnetic and thermodynamic factors that govern transmembrane potential. Computational results are supported by well-established quantitative descriptions of propagated signaling phenomena in the membrane of an axon. The findings demonstrate how intracellular conductance, the thermodynamics of magnetization, and current modulation function together in generating an action potential in a unified closed-form description. The work presented in this paper provides compelling evidence that three basic factors contribute to the propagatedmore » signaling in the membrane of an axon. It is anticipated this work will compel those in biophysics, physical biology, and in the computational neurosciences to probe deeper into the classical and quantum features of membrane magnetization and signaling. It is hoped that subsequent investigations of this sort will be advanced by the computational features of this model without having to resort to numerical methods of analysis.« less
Authors:
 [1]
  1. School of Engineering and Computational Sciences, Liberty University, Lynchburg, Virginia 24515 (United States)
Publication Date:
OSTI Identifier:
22493101
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 118; Journal Issue: 24; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BIOPHYSICS; CELL MEMBRANES; DEPOLARIZATION; ELECTRIC POTENTIAL; ELECTRICAL PROPERTIES; MAGNETIC FIELDS; MAGNETIZATION; MODULATION; NERVE CELLS; POLARIZATION; PROBES; SIGNALS; THERMODYNAMICS; UNIFIED MODEL