skip to main content

Title: Jet formation in cerium metal to examine material strength

Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength awaremore » multi-phase EOS required to predict the response of matter at extreme conditions.« less
Authors:
; ; ; ; ; ; ;  [1] ;  [2] ; ;  [3]
  1. Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
  2. Argonne National Laboratory, Argonne, Illinois 60439 (United States)
  3. National Security Technologies LLC, Los Alamos, New Mexico 87544 (United States)
Publication Date:
OSTI Identifier:
22492958
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 118; Journal Issue: 19; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CERIUM; DYNAMIC LOADS; EQUATIONS OF STATE; FLUID FLOW; INSTABILITY; PHASE DIAGRAMS; PHASE TRANSFORMATIONS; PRESSURE RANGE MEGA PA 10-100; SENSITIVITY; SOLIDS; SPATIAL RESOLUTION; STRESSES; TIME RESOLUTION; TRANSIENTS; X RADIATION