skip to main content

SciTech ConnectSciTech Connect

Title: Thermal conductivity of III-V semiconductor superlattices

This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivities in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simplemore » and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.« less
Authors:
;  [1]
  1. Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
Publication Date:
OSTI Identifier:
22492894
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 118; Journal Issue: 17; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANISOTROPY; BOLTZMANN EQUATION; CAPTURE; DIFFUSE SCATTERING; INTERFACES; LASERS; LAYERS; MASS DIFFERENCE; PHONONS; RELAXATION TIME; ROUGHNESS; SEMICONDUCTOR MATERIALS; SUPERLATTICES; THERMAL BOUNDARY RESISTANCE; THERMAL CONDUCTIVITY; TRANSMISSION; WAVELENGTHS