skip to main content

SciTech ConnectSciTech Connect

Title: Electronic and magnetic properties of Si substituted Fe{sub 3}Ge

Using first principles calculations, we studied the effect of Si substitution in the hexagonal Fe{sub 3}Ge. We find the low temperature magnetic anisotropy in this system to be planar and originating mostly from the spin-orbit coupling in Fe-d states. Reduction of the unitcell volume reduces the magnitude of in-plane magnetic anisotropy, eventually turning it positive which reorients the magnetic moments to the axial direction. Substituting Ge with the smaller Si ions also increases the anisotropy, potentially enhancing the region of stability of the axial magnetization, which is beneficial for magnetic applications such as permanent magnets. Our experimental measurements on samples of Fe{sub 3}Ge{sub 1−x}Si{sub x} confirm these predictions and show that substitution of about 6% of the Ge with Si increases by approximately 35 K the temperature range over which anisotropy is uniaxial.
Authors:
; ;  [1]
  1. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056 (United States)
Publication Date:
OSTI Identifier:
22492716
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 118; Journal Issue: 12; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANISOTROPY; D STATES; L-S COUPLING; MAGNETIC MOMENTS; MAGNETIC PROPERTIES; MAGNETIZATION; PERMANENT MAGNETS; SILICON IONS; STABILITY