skip to main content

Title: Experimental study of intense radiation in terahertz region based on cylindrical surface wave resonator

Periodical corrugations structured on a cylindrical conductor have cylindrical surface waves (CSWs), which are reflected at the corrugation ends and form a CSW-resonator. In this paper, intense radiations in terahertz region based on the CSW-resonator are reported. The CSW-resonators with upper cut off frequencies in the modern IEEE G-band (110–300 GHz) are excited by a coaxially injected annular beam in a weakly relativistic region less than 100 kV. It is shown that there exists an oscillation starting energy for the CSW-resonator. Above the starting energy, very intense terahertz radiations on the order of kW are obtained. The operation frequencies in the range of 166–173 GHz and 182–200 GHz are obtained using two types of CSW-resonator with the different corrugation amplitude. Electromagnetic properties of the CSW-resonator can be controlled by the artificial structure and may play an important role in high-intensity terahertz generations and applications.
Authors:
; ; ; ; ; ; ; ; ;  [1]
  1. Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)
Publication Date:
OSTI Identifier:
22492705
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 118; Journal Issue: 12; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AMPLITUDES; BEAMS; CYLINDRICAL CONFIGURATION; GHZ RANGE 100-1000; OSCILLATIONS; PERIODICITY; RELATIVISTIC RANGE; RESONATORS; WAVE PROPAGATION