skip to main content

SciTech ConnectSciTech Connect

Title: Numerical modelling of nonlinear full-wave acoustic propagation

The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Authors:
;  [1]
  1. Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)
Publication Date:
OSTI Identifier:
22492647
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1685; Journal Issue: 1; Conference: 20. international symposium on nonlinear acoustics, Ecully (France), 29 Jun - 3 Jul 2015, 2. international sonic boom forum, Ecully (France), 29 Jun - 3 Jul 2015; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ACOUSTICS; COMPUTERIZED SIMULATION; DIFFRACTION; EQUATIONS; FLUID MECHANICS; HYPOTHESIS; MACH NUMBER; MATHEMATICAL SOLUTIONS; NONLINEAR PROBLEMS; SOUND WAVES; TWO-DIMENSIONAL CALCULATIONS; WAVELENGTHS