skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Charge transport studies in donor-acceptor block copolymer PDPP-TNT and PC71BM based inverted organic photovoltaic devices processed in room conditions

Journal Article · · AIP Advances
DOI:https://doi.org/10.1063/1.4927763· OSTI ID:22492275
;  [1]
  1. School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia-4001 (Australia)

Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C{sub 71} butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO{sub 3}/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10{sup −3} cm{sup 2}V{sup −1}s{sup −1}, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10{sup −5} cm{sup 2}V{sup −1}s{sup −1}, and electron mobility of 8.7 × 10{sup −4} cm{sup 2}V{sup −1}s{sup −1}.

OSTI ID:
22492275
Journal Information:
AIP Advances, Vol. 5, Issue 7; Other Information: (c) 2015 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 2158-3226
Country of Publication:
United States
Language:
English