skip to main content

SciTech ConnectSciTech Connect

Title: Photoconductivity in Dirac materials

Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi’s golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.
Authors:
;  [1]
  1. State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials & Engineering, School of Physics & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong (China)
Publication Date:
OSTI Identifier:
22492197
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 5; Journal Issue: 11; Other Information: (c) 2015 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ANISOTROPY; BOLTZMANN EQUATION; COMPARATIVE EVALUATIONS; GRAPHENE; IRRADIATION; PHOTOCONDUCTIVITY; RELAXATION TIME; SCATTERING; SEMIMETALS; SURFACES; THREE-DIMENSIONAL LATTICES; TWO-DIMENSIONAL SYSTEMS