skip to main content

Title: Defect-induced discriminative modulation of the highest occupied molecular orbital energies of graphene

Defects are capable of modulating various properties of graphene, and thus controlling defects is useful in the development of graphene-based devices. Here we present first-principles calculations, which reveal a new avenue for defect engineering of graphene: the modulation by defects on the highest occupied molecular orbital (HOMO) energy of a charged monolayer graphene quantum dot (GQD) is discriminative. When the charge of a GQD increases its HOMO energy also increases. Importantly, when the GQD contains one particular class of defects its HOMO energy is sometimes higher and sometimes lower than that of the corresponding GQD without any defects, but when the GQD contains another class of defects its HOMO energy is always higher or lower than that of the corresponding intact GQD as its excess charge reaches a critical value. This discriminative modulation could allow defect engineering to control secondary electron ejection in graphene, leading to a new way to develop graphene-based devices.
Authors:
; ;  [1] ;  [1] ;  [2]
  1. National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22492172
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 5; Journal Issue: 11; Other Information: (c) 2015 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; CONTROL; DEFECTS; ELECTRONS; GRAPHENE; LAYERS; MODULATION; MOLECULAR ORBITAL METHOD; QUANTUM DOTS