skip to main content

SciTech ConnectSciTech Connect

Title: CO{sub 2} binding in the (quinoline-CO{sub 2}){sup −} anionic complex

We have studied the (quinoline-CO{sub 2}){sup −} anionic complex by a combination of mass spectrometry, anion photoelectron spectroscopy, and density functional theory calculations. The (quinoline-CO{sub 2}){sup −} anionic complex has much in common with previously studied (N-heterocycle-CO{sub 2}){sup −} anionic complexes both in terms of geometric structure and covalent bonding character. Unlike the previously studied N-heterocycles, however, quinoline has a positive electron affinity, and this provided a pathway for determining the binding energy of CO{sub 2} in the (quinoline-CO{sub 2}){sup −} anionic complex. From the theoretical calculations, we found CO{sub 2} to be bound within the (quinoline-CO{sub 2}){sup −} anionic complex by 0.6 eV. We also showed that the excess electron is delocalized over the entire molecular framework. It is likely that the CO{sub 2} binding energies and excess electron delocalization profiles of the previously studied (N-heterocycle-CO{sub 2}){sup −} anionic complexes are quite similar to that of the (quinoline-CO{sub 2}){sup −} anionic complex. This class of complexes may have a role to play in CO{sub 2} activation and/or sequestration.
Authors:
; ; ;  [1] ;  [2]
  1. Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States)
  2. Department of Chemistry, Seoul National University, Seoul 151-747 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22490815
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 142; Journal Issue: 23; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANIONS; BINDING ENERGY; BONDING; CARBON DIOXIDE; COVALENCE; DENSITY FUNCTIONAL METHOD; ELECTRONS; EV RANGE; MASS SPECTROSCOPY; PHOTOELECTRON SPECTROSCOPY