skip to main content

SciTech ConnectSciTech Connect

Title: Non-radiative recombination in Ge{sub 1−y}Sn{sub y} light emitting diodes: The role of strain relaxation in tuned heterostructure designs

This paper describes the properties of Ge{sub 1−y}Sn{sub y} light emitting diodes with a broad range of Sn concentrations (y = 0.0–0.11). The devices are grown upon Si(100) platforms using ultra-low temperature deposition of highly reactive Ge and Sn hydrides. The device fabrication adopts two new photodiode designs which lead to optimized performance and enables a systematic study of the effects of strain relaxation on emission efficiency. In contrast with n-Ge/i-Ge{sub 1−y}Sn{sub y}/p-Ge analogs, which in most cases contain two defected interfaces, our designs include a p-layer with composition Ge{sub 1−z}Sn{sub z} chosen to be z < y to facilitate light extraction, but with z close enough to y to guarantee no strain relaxation at the i/p interface. In addition, a Ge{sub 1−x}Sn{sub x} alloy is also used for the n layer, with compositions in the 0 ≤ x ≤ y range, so that defected and non-defected n/i interfaces can be studied. The electroluminescence spectra vs the Sn content y in the intrinsic layer of the diodes exhibit a monotonic shift in the emission wavelength from 1550 nm to 2500 nm. On the other hand, the emission intensities show a complex dependence that cannot be explained solely on the basis of Sn concentrations. Detailed theoretical modeling of these intensities makesmore » it possible to extract recombination lifetimes that are found to be more than three times longer in samples in which strain relaxation has not occurred at the n-i interface, demonstrating the existence of a large non-radiative contribution from the relaxation defects. This finding is particularly significant for direct gap diodes with y > 0.09, for which it is practically impossible to avoid strain relaxation in n-Ge/i-Ge{sub 1−y}Sn{sub y}/p-Ge analogs. The new designs introduced here open the door to the fabrication of highly efficient electrically pumped systems for applications in future generations of integrated photonics.« less
Authors:
; ; ;  [1] ; ; ;  [2] ;  [3]
  1. Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)
  2. Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States)
  3. LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704 (United States)
Publication Date:
OSTI Identifier:
22490746
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 24; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALLOYS; DEPOSITION; ELECTROLUMINESCENCE; FABRICATION; INTERFACES; LAYERS; LIGHT EMITTING DIODES; RELAXATION; STRAINS; WAVELENGTHS