skip to main content

Title: Cosmological constraints on neutrinos with Planck data

Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.
Authors:
 [1]
  1. Laboratoire de l’Accélérateur Linéaire, Bat.200, 91400 Orsay (France)
Publication Date:
OSTI Identifier:
22490661
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1666; Journal Issue: 1; Conference: Neutrino 2014: 26. international conference on neutrino physics and astrophysics, Boston, MA (United States), 2-7 Jun 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ANISOTROPY; COSMOLOGY; ENERGY DENSITY; LIMITING VALUES; NEUTRINOS; NUCLEOSYNTHESIS; PARTICLE PRODUCTION; RELICT RADIATION; REST MASS; SATELLITES; UNIVERSE; VISIBLE RADIATION