skip to main content

SciTech ConnectSciTech Connect

Title: Numerical modeling of heat transfer in molten silicon during directional solidification process

Numerical investigation is performed for some of the thermal and fluid flow properties of silicon melt during directional solidification by numerical modeling. Dimensionless numbers are extremely useful to understand the heat and mass transfer of fluid flow on Si melt and control the flow patterns during crystal growth processes. The average grain size of whole crystal would increase when the melt flow is laminar. In the silicon growth process, the melt flow is mainly driven by the buoyancy force resulting from the horizontal temperature gradient. The thermal and flow pattern influences the quality of the crystal through the convective heat and mass transport. The computations are carried out in a 2D axisymmetric model using the finite-element technique. The buoyancy effect is observed in the melt domain for a constant Rayleigh number and for different Prandtl numbers. The convective heat flux and Reynolds numbers are studied in the five parallel horizontal cross section of melt silicon region. And also, velocity field is simulated for whole melt domain with limited thermal boundaries. The results indicate that buoyancy forces have a dramatic effect on the most of melt region except central part.
Authors:
;  [1]
  1. SSN Research Centre, SSN College of Engineering, Chennai-603110 (India)
Publication Date:
OSTI Identifier:
22490494
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1665; Journal Issue: 1; Conference: 59. DAE solid state physics symposium 2014, Tamilnadu (India), 16-20 Dec 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; AXIAL SYMMETRY; COMPUTERIZED SIMULATION; CRYSTAL GROWTH; CRYSTALS; FINITE ELEMENT METHOD; FLUID FLOW; GRAIN SIZE; HEAT; HEAT FLUX; HEAT TRANSFER; MASS TRANSFER; PRANDTL NUMBER; RAYLEIGH NUMBER; SILICON; SOLIDIFICATION; TEMPERATURE GRADIENTS