skip to main content

Title: Synthesis and Raman analysis of SnS nanoparticles synthesized by PVP assisted polyol method

SnS film was prepared by a simple drop casting method after synthesizing SnS nanoparticles by using PVP assisted polyol method. Confocal Raman study was carried out for the as deposited and annealed (150, 300 and 400 °C) films at two different excitation wavelengths 514 and 785 nm. At the excitation wavelength of 514 nm, the Raman modes showed for a mixed phase of SnS and SnS{sub 2} up to 150 °C and then only a pure SnS phase was observed up to 400 °C due to the dissociation of SnS{sub 2} in to SnS by releasing S. The increase in intensity of Raman (A{sub g} and B{sub 3g}) as well as IR (B{sub 3u}) active modes of SnS are observed with increasing annealing temperature at excitation wavelength 785 nm due to the increased crystallinity and inactiveness of SnS{sub 2} modes. X-ray diffraction confirming the formation of a single phase of SnS while the greater homogeneity in both size and shape of SnS nanoparticles were confirmed through surface morphology from SEM.
Authors:
;  [1]
  1. Department of Physics, School of Physical, Chemical and Applied Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry-605014 (India)
Publication Date:
OSTI Identifier:
22490331
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1665; Journal Issue: 1; Conference: 59. DAE solid state physics symposium 2014, Tamilnadu (India), 16-20 Dec 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ANNEALING; DISSOCIATION; EXCITATION; FILMS; MORPHOLOGY; NANOPARTICLES; PVP; RAMAN SPECTROSCOPY; SCANNING ELECTRON MICROSCOPY; SURFACES; SYNTHESIS; TIN SULFIDES; X-RAY DIFFRACTION