skip to main content

Title: Study on synthesis and electrochemical properties of hematite nanotubes for energy storage in supercapacitor

Hematite nanotubes (α-Fe{sub 2}O{sub 3} NTs) are synthesized via a cost-effective and environmental-friendly hydrothermal technique. Field emission scanning electron microscopy and X-ray powder diffraction analyses reveal the formation of α-Fe{sub 2}O{sub 3} NTs with high crystallinity and purity. Optical behavior of α-Fe{sub 2}O{sub 3} NTs is studied employing UV-visible spectroscopy. Electrochemical properties of the as-prepared electrode material are investigated by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy in a three electrode cell. The synthesized α-Fe{sub 2}O{sub 3} NTs present enhanced pseudocapacitive performance with high specific capacity of 230 Fg{sup −1} at current density of 1 Ag{sup −1}. The prepared α-Fe{sub 2}O{sub 3} NTs can be utilized as a potential electrode material for electrochemical capacitor applications.
Authors:
;  [1]
  1. Department of Physics, Loyola College (Autonomous), Chennai-600034 (India)
Publication Date:
OSTI Identifier:
22490271
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1665; Journal Issue: 1; Conference: 59. DAE solid state physics symposium 2014, Tamilnadu (India), 16-20 Dec 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABSORPTION SPECTROSCOPY; CAPACITORS; CAPACITY; CURRENT DENSITY; ELECTROCHEMISTRY; ELECTRODES; ENERGY STORAGE; FERRITES; FIELD EMISSION; HEMATITE; IMPEDANCE; IRON OXIDES; NANOTUBES; SCANNING ELECTRON MICROSCOPY; SYNTHESIS; VOLTAMETRY; X-RAY DIFFRACTION