skip to main content

SciTech ConnectSciTech Connect

Title: Two-dimensional simulation of spatiotemporal generation of dielectric barrier columnar discharges in atmospheric helium

A two-dimensional (2D) fluid model is presented to investigate the spatiotemporal generation and dynamic mechanics of dielectric barrier columnar discharges in atmospheric helium. The model was examined with discharge currents measured in experiments and images taken by an intensified charge couple device camera. Based on the model, a columnar discharge was simulated for several cycles after being ignited. The discharge could be regarded as an initial unstable stage for the first three and a half cycles, then a steady state for the following cycles. In the initial stage, the discharge evolves from a uniform pattern into a columnar one. The calculated equipotential lines, 2D radial electric field, and electron density distributions at the edge of uniform discharges show the radial electric field accounts for the shrinking discharge area and the formation of discharge columns in the end. The columnar glow discharges and the Townsend discharges beyond the columns could coexist in the initial stage, and a Townsend discharge might develop into a new glow column in the next half-cycle. The radial electric field surrounding a glow discharge column has an inhibiting effect on the ionization in the peripheral area.
Authors:
; ; ; ;  [1]
  1. School of Electric Power, South China University of Technology, Guangzhou 510641 (China)
Publication Date:
OSTI Identifier:
22489970
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 22; Journal Issue: 12; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; CHARGE-COUPLED DEVICES; COMPUTERIZED SIMULATION; DIELECTRIC MATERIALS; ELECTRIC FIELDS; ELECTRON DENSITY; GLOW DISCHARGES; HELIUM; IMAGES; STEADY-STATE CONDITIONS; TOWNSEND DISCHARGE; TWO-DIMENSIONAL CALCULATIONS