skip to main content

SciTech ConnectSciTech Connect

Title: The ignition design space of magnetized target fusion

The simple magnetized target implosion model of Lindemuth and Kirkpatrick [Nucl. Fusion 23, 263 (1983)] has been extended to survey the potential parameter space in which three types of magnetized targets—cylindrical with axial magnetic field, cylindrical with azimuthal magnetic field, and spherical with azimuthal magnetic field—might achieve ignition and produce large gain at achievable radial convergence ratios. The model has been used to compute the dynamic, time-dependent behavior of many initial parameter sets that have been based upon projected ignition conditions using the quasi-adiabatic and quasi-flux-conserving properties of magnetized target implosions. The time-dependent calculations have shown that energy gains greater than 30 can potentially be achieved for each type of target. By example, it is shown that high gain may be obtained at extremely low convergence ratios, e.g., less than 15, for appropriate initial conditions. It is also shown that reaching the ignition condition, i.e., when fusion deposition rates equal total loss rates, does not necessarily lead to high gain and high fuel burn-up. At the lower densities whereby fusion temperatures can be reached in magnetized targets, the fusion burn rate may be only comparable with the hydrodynamic heating/cooling rates. On the other hand, when the fusion burn rates significantlymore » exceed the hydrodynamic rates, the calculations show a characteristic rapid increase in temperature due to alpha particle deposition with a subsequent increased burn rate and high gain. A major result of this paper is that each type of target operates in a different initial density-energy-velocity range. The results of this paper provide initial target plasma parameters and driver parameters that can be used to guide plasma formation and driver development for magnetized targets. The results indicate that plasmas for spherical, cylindrical with azimuthal field, and cylindrical with axial field targets must have an initial density greater than approximately 10{sup 17}/cm{sup 3}, 10{sup 18}/cm{sup 3}, and 10{sup 20}/cm{sup 3}, respectively, implying constraints on target plasma formation research.« less
Authors:
 [1]
  1. 2490 North Grannen Road, Tucson, Arizona 85745 (United States)
Publication Date:
OSTI Identifier:
22489944
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 22; Journal Issue: 12; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ALPHA PARTICLES; BURNUP; CONVERGENCE; COOLING; CYLINDRICAL CONFIGURATION; ENERGY DENSITY; GAIN; HEATING; IMPLOSIONS; LIMITING VALUES; MAGNETIC FIELDS; PLASMA; SPHERICAL CONFIGURATION; THERMONUCLEAR IGNITION; THERMONUCLEAR REACTIONS; TIME DEPENDENCE