skip to main content

Title: Simulation of nucleation and growth of atomic layer deposition phosphorus for doping of advanced FinFETs

Simulations for the nucleation and growth of phosphorus films were carried out using density functional theory. The surface was represented by a Si{sub 9}H{sub 12} truncated cluster surface model with 2 × 1-reconstructured (100) Si-OH terminations for the initial reaction sites. Chemistries included phosphorous halides (PF{sub 3}, PCl{sub 3}, and PBr{sub 3}) and disilane (Si{sub 2}H{sub 6}). Atomic layer deposition (ALD) reaction sequences were illustrated with three-dimensional molecular models using sequential PF{sub 3} and Si{sub 2}H{sub 6} reactions and featuring SiFH{sub 3} as a byproduct. Exothermic reaction pathways were developed for both nucleation and growth for a Si-OH surface. Energetically favorable reactions for the deposition of four phosphorus atoms including lateral P–P bonding were simulated. This paper suggests energetically favorable thermodynamic reactions for the growth of elemental phosphorus on (100) silicon. Phosphorus layers made by ALD are an option for doping advanced fin field-effect transistors (FinFETs). Phosphorus may be thermally diffused into the silicon or recoil knocked in; simulations of the recoil profile of phosphorus into a FinFET surface are illustrated.
Authors:
 [1] ; ;  [2] ;  [3]
  1. Seitek50, Palm Coast, Florida 32135 (United States)
  2. Schrödinger, Inc., San Diego, California 92122 (United States)
  3. Current Scientific, San Jose, California 95124 (United States)
Publication Date:
OSTI Identifier:
22489782
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films; Journal Volume: 34; Journal Issue: 1; Other Information: (c) 2015 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; DENSITY FUNCTIONAL METHOD; DEPOSITION; FIELD EFFECT TRANSISTORS; FILMS; MOLECULAR MODELS; NUCLEATION; PHOSPHORUS; SILANES; SILICON; SIMULATION; SURFACES